City Challenges

Cities are facing rapid urbanization, economic constraints, and environmental sustainability.

Rapid growth puts pressure on city infrastructure, making it harder to maintain citizen quality of life.

There's a greater need to manage carbon footprint and improve sustainability.

Boosting the **livability index** is more crucial than ever to retain and attract trade, commerce, and talent

The ability to improve city infrastructure management is crucial to defining and achieving social, environmental, and economic success.

Cities Needs to Find New Ways to Enable Citizen Interaction and Deliver Services

Cities traditionally address these challenges in silos.

This Fragmented Approach Is Inefficient.

Citizens are uninspired. The challenges are not solved.

Current State of Urban Services Technology

Multi Vendor System

While enables competitive environment for vendors, creates fragmented operations

Each vendor brings their own device to cloud offering leading to lack of single, common operations capability

No Standardization on Data Models and APIs for City Infrastructure Devices

Parking solution can be based on sensors or video analytics. No common data model

Multiple Lighting vendors bring in different interfaces for Adaptive LED lighting management and operations

Lack of Common Data Infrastructure and Information Sharing

City Safety Operations does not have real time view of Outdoor Lighting

Parking Operations can benefit from real time traffic information and location services

Fragmented Application Eco System

Different Applications leveraging different data sources and models.

Parking Challenges

Lighting Challenges

Traffic & security Challenges

Economic Results for Cities

Solution Components

3 3rd Party
Sensors

2 Cisco Data Plan

4 3rd Party
Apps and Services

1 Cisco Infrastructure/Core Networking

The Platform Enables Multiple Smart City Use Cases

Parking Enforcement App

Operations Center

City Dashboard

Smart+Connected Digital Platform – What It Does

Aggregate Sensor Data from multiple sensors/sensor types regardless of backhaul through integration

Normalize the aggregated data to a common data model and build a Digital Model for the City

ISVs, Applications and City
Systems to manage City
infrastructure & services

What should a city do?

You Can with Cisco Validated Solutions

Solutions

Use Cases

Customer Wins

Cisco **Connected Rail**

(Connected Train, Station, Trackside)

- Positive Train Control (PTC)
- Passenger Wi-Fi
- Stations-as-a-Service (StaaS)

- Physical security onboard trains, in NetworkRail stations and trackside
- Improved wayfinding and passenger services

Cisco Connected Roadways

- Real-time monitoring of road, weather, traffic conditions
- Proactive Maintenance Alerts
- Traffic Signal Prioritization (TSP)
- Live incident alerts and video

- Safer, less congested roads
- Centralized traffic management
- Better roadway utilization

Cisco Connected **Mass Transit**

- Onboard Passenger Wi-Fi
- Proactive Maintenance Alerts
- Connected Transit Vehicles

- Connected vehicles. yard, stops and stations
- Live video surveillance
- Better passenger experience

Subway Internet Access

Moscow subway - Where we did that project

- Moscow subway was open at May15th, 1935
- Nowadays it consist of 12 lines, 313,1km long (2 ways), 188 stations
- 44 stations are objects of cultural and historical heritage
- 6,73 million passengers is an average number which is transferred on a daily basis through subway. Max number is 9,3 million (registered at Nov 29th, 2012)
- Train speed is up to 80 Kmph

Tunnel environment

- Harsh, dusty environment inside tunnel filled with electrically conducted dust made by running contacts (contact electric pair)
- Two times a year all tunnels are flushed with water for cleaning purposes
- Tunnels are different from materials and configuration point of view, even at the same line
- Antenna orientation toward moving train requires custom-made restrain system and hermetic boxes for RF equipment

Installation environment

Performance results

- 100 Mbps an average TCP throughput (was 46, then 65 Mbps)
- AP distance range is extended up to 360 m (was 260 m at most)
- No L3 roaming impact on the throughput

London Tube

http://www.gizmodo.co.uk/2017/02/heres-what-tfl-learned-from-tracking-your-phone-on-the-tube/

Here's What TfL Learned From Tracking Your Phone On the Tube

London Tube

- 54 out of 270 stations
- Route Tracking
- In-Station Tracking
- Advertising Potential

Public Bus Transport: Telemetry Integration

Connected Bus Stations

RuBAN: An IOT Service Delivery Platform

RuBANtm Vehicle to Vehicle

RuBANtm Driver Management

RuBANtm Vehicle Telematics

RuBANtm Physical Security

Main User Interface

Cisco CMX - Gain Insights & Innovate

DETECT

- Presence and location detection
- Visibility (Wi-Fi, BLE)

CONNECT

- Easy Wi-Fi login, custom or social
- Zone-based, custom splash pages

ENGAGE

- App-based mobile engagement
- Context-aware in-venue experiences

Reference SIGNAL Festival

13. – 16.10.2016, Praha 1,2,3

HOW DID WE DO IT?

- 19 Cisco Outdoor Aps 1532
- WLC 5520
- Cisco CMX presence
- Cisco CMX location
- Cisco CMX cloud
- SERVICES provided:
 - WIFI HOTSPOT
 - EMAIL HARVESTING
 - CMX MEASURING/ANALYTICAL TOOL

Visitors of the Festival, detected throughout whole day

Visitors of the Festival

Individual installations throughout the day

Time dedicated to individual installation

Paths analysis

Free – WI-FI as a public service

Enjoy free Wi-Fi on Signal Festival

Please kindly enter your email address. We will inform you about interesting news. By providing your email address you agree to process the data for crowd counting purposes.

Portál, preferovaný jazyk

Typical Path – a bit extra data mining

- FESTIVAL OPTIMISATION
 - LOWERING THE NUMBER OF INSTALLATIONS
 - ADJUSTMENT OF CATERING/SOUVENIR STALLS
 - MONETISATION
- AUDIENCE
 - PRECISE NUMBERS
 - ADJUSTMENT OF FESTIVAL ROUTE
- SPONSOR IMPACT
- LOBBYING
 - ECONOMIC IMPACT STUDY

